
Hessle High School Science Department

Chemistry Combined Foundation

This document will help you work with students to assess their understanding of the science curriculum for their exam. The students have their personal learning checklist from their mock exams. They need to revise these topics, then they can use these questions to test their understanding.

Paper

Question	Answer	Торіс
The reactants of a reaction have 20kJ of energy,		
how much energy will be present at the end of the		C7.1 Exothermic and endothermic
reaction? Why?	20KJ as the energy is conserved.	reactions
		C7.1 Exothermic and endothermic
What is an exothermic reaction?	Transfers energy to the surroundings so the temperature increases.	reactions
		C7.1 Exothermic and endothermic
What is an endothermic reaction?	Requires energy from the surroundings so the temperature decreases.	reactions
		C7.1 Exothermic and endothermic
What are examples of exothermic reactions?	Combustion, oxidation reactions and neutralisation reactions.	reactions
	Thermal decomposition and citric acid and sodium hydrogen	C7.1 Exothermic and endothermic
What are examples of endothermic reactions?	carbonate reacting.	reactions
What are two applications of exothermic		C7.1 Exothermic and endothermic
reactions?	Self-heating cans and hand warmers.	reactions
		C7.1 Exothermic and endothermic
What is one application of endothermic reactions?	Sports injury packs.	reactions
A reaction changes temperature from 25'c to 43'c		C7.2 Using energy transfers from
what type of reaction is this? How do you know?	The reaction is exothermic as the temperature has increased.	reactions
A reaction changes temperature from 75'c to 43'c		C7.2 Using energy transfers from
what type of reaction is this? How do you know?	The reaction is endothermic as the temperature has decreased.	reactions
An acid and alkali are reacted leading to a		
temperature increase. More alkali is added but the	The temperature plateaus as all the acid have reacted with the alkali	C7.2 Using energy transfers from
temperature does not continue to increase- why?	(exothermic reaction) so the reaction is complete.	reactions
	The minimum amount of energy particles must collide with to be able	C7.2 Using energy transfers from
What is activation energy?	to react.	reactions
	Must include the following- energy of reactants higher than products,	
Draw the reaction profile for an exothermic	a curve to show activation energy, an arrow labelled overall energy	
reaction.	change (or ΔH).	C7.3 Reaction profiles

	Must include the following- energy of reactants lower than products,	
Draw the reaction profile for an endothermic	a curve to show activation energy, an arrow labelled overall energy	
reaction.	change (or ΔH).	C7.3 Reaction profiles
What can be measured to find out the rate of		
reaction?	reactant lost/time OR product made/time	C8.1 Rate of reaction
What is the rate of a chemical reaction in terms of		
reactants?	How quickly the reactants in a reaction are used up	C8.1 Rate of reaction
What is the rate of a chemical reaction in terms of		
products?	How quickly the products in a reaction are formed	C8.1 Rate of reaction
What are the units for the quantity of reactants or		
product?	grams or in cm ³	C8.1 Rate of reaction
What are the two possible units for rate of		
reaction?	g/s or cm ³ /s (where s is seconds)	C8.1 Rate of reaction
How could you measure the rate of a reaction from		
a graph at specific time?	Draw a tangent to the curve and calculate the gradient.	C8.1 Rate of reaction
	Chemical reactions can occur only when	
What is "collision theory"?	reacting particles collide with each other and with sufficient energy.	C8.2 Collision theory and surface area
	Temperature, surface area of a solid, concentration or reactants in	
What factors can affect the rate of a reaction?	solution, pressure of gases	C8.2 Collision theory and surface area
State the effect of increasing the surface area to		
volume ratio on the rate of a reaction?	Rate increases	C8.2 Collision theory and surface area
Explain why increasing the surface area increases	More particles are available to collide so more frequent collisions and	
the rate of a reaction?	so the rate of reaction increases	C8.2 Collision theory and surface area
What does Collison theory explain?	How various factors affect rates of reactions.	C8.2 Collision theory and surface area
i i		
What is the activation energy? State the effect of increasing the temperature on	The minimum amount of energy that particles must have to react	C8.2 Collision theory and surface area
the rate of reaction	Increases	C8.3 The effect of temperature
Explain why increasing the temperature increases		
the rate of reaction	Particles collide more frequently and with more energy	C8.3 The effect of temperature
State the effect of increasing the concentration on		C8.4 The effect of concentration or
the rate of reaction	Increases	pressure
Explain why increasing the concentration increases	More particles of reactants in the same volume= increase in frequency	C8.4 The effect of concentration or
the rate of reaction	of collisions = increase in rate of reaction.	pressure
State the effect on increasing the pressure of a gas		C8.4 The effect of concentration or
on the rate of reaction	Increases	pressure
Explain why increasing the pressure of a gas	Less space = same number of particles in smaller volume = increase in	C8.4 The effect of concentration or
increases the rate of a reaction	frequency of collisions = increase in rate of reaction.	pressure
		p

	Something which changes the rate of a reaction but is not used up in	
What is a catalyst?	that reaction	C8.5 The effect of catalysts
	They provide another route for the reaction to take place which has a	
How do catalysts speed up reactions?	lower activation energy.	C8.5 The effect of catalysts
Are catalysts used up in a reaction?	No	C8.5 The effect of catalysts
What is a biological catalyst?	Enzyme	C8.5 The effect of catalysts
Sketch a reaction profile with and without a	Reactants Products and Activation energy labelled. Catalyst has a	
catalyst	lower activation energy	C8.5 The effect of catalysts
	Reactions take place and lower pressure, and temperatures so fewer	
Why is using catalysts better for the environment?	fossil fuels are needed	C8.5 The effect of catalysts
	The products of the reaction can react to produce the original	
What is a reversible reaction?	reactants.	C8.6 Reversible reactions
What is the symbol for a reversible reaction?	2	C8.6 Reversible reactions
A reaction is endothermic in one direction, what	Exothermic- it will release the same amount of energy as the	
will the reverse reaction be?	endothermic reaction absorbed.	C8.6 Reversible reactions
What colour is hydrated copper sulfate?	Blue	C8.7 Energy and reversible reactions
What colour is anhydrous copper sulfate?	White	C8.7 Energy and reversible reactions
Write a word equation for the reversible reaction		
between hydrated and anhydrous copper sulfate.	Hydrated copper sulfate	C8.7 Energy and reversible reactions
	In a closed system the rate of the forward and backward reactions is	
What is equilibrium?	equal	C8.7 Energy and reversible reactions
	Adding bromine water. If the chemical is an alkane, the bromine	
	water will not react so it will stay orange/brown. If the chemical is an	
	alkene, the bromine water will react and change from an	
What is the test for alkanes?	orange/brown colour to colourless.	C9.1 Hydrocarbons
	By fractional distillation- each fraction contains hydrocarbons of	
How are the hydrocarbons separated?	similar number of carbon atoms which have a similar boiling point.	C9.2 Fractional distillation of oil
	The crude oil is heated until it evaporates. The vapours rise through	
	the fractioning column, as they rise, they cool. When they become	
	cool enough, they condense. Small hydrocarbons have low boiling points, so they leave out the top of the column as gases. Large	
How does fractional distillation separate	hydrocarbons have high boiling points, so they condense quickly and	
hydrocarbons?	leave the column at the bottom as a liquid.	C9.2 Fractional distillation of oil
Why is it useful to separate crude oil into	To make more useful products such as fuels, solvents, lubricants,	
fractions?	polymers and detergents.	C9.2 Fractional distillation of oil

As the length of the hydrocarbon increases, what		
happens to the boiling point?	It decreases so condenses easily.	C9.2 Fractional distillation of oil
What is viscosity?	How thick a liquid is.	C9.2 Fractional distillation of oil
As the length of the hydrocarbon increases, what		
happens to the viscosity?	The viscosity increases- it gets thicker.	C9.2 Fractional distillation of oil
As the length of the hydrocarbon increases, what		
happens to the flammability?	The flammability decreases, as the compounds are less volatile.	C9.3 Burning hydrocarbon fuels
What is the word equation for combustion?	A fuel (hydrocarbon) + oxygen> carbon dioxide + water	C9.3 Burning hydrocarbon fuels
What is cracking?	Breaking long hydrocarbons into smaller more useful hydrocarbons.	C9.4 Cracking hydrocarbons
What are the two methods of cracking?	Using a catalyst or steam.	C9.4 Cracking hydrocarbons
What are the products of cracking?	Alkanes and alkenes	C9.4 Cracking hydrocarbons
	A single element or compound that is not mixed with any other	
What is a pure substance?	substance.	C12.1 Pure substances and mixtures
How can a pure substance be detected?	It will melt/boil at a specific temperature.	C12.1 Pure substances and mixtures
	A mixture that has been designed as a useful product- where each	
What is a formulation?	component has a particular purpose and an optimal quantity.	C12.1 Pure substances and mixtures
	Fuels, cleaning products, paints, medicines, alloys, fertilisers and	
Name 7 examples of formulations.	foods.	C12.1 Pure substances and mixtures
	A stationary phase (normally paper) and a mobile phase (a solvent	
What phases are involved in chromatography?	that is often water).	C12.2 Analysing chromatograms
What is an Rf value?	The ration of the distance moved by the compound to the distance moved by the mobile phase.	C12.2 Analysing chromatograms
How is an Rf value calculated? A chromatogram of a pure substance will contain	Distance moved by the substance / Distance moved by mobile phase	C12.2 Analysing chromatograms
how many spots?	1	C12.2 Analysing chromatograms
	Hold a burning splint at the end of the test tube containing the gas- if	
Explain how to test for hydrogen gas.	the gas is hydrogen, it will burn rapidly with a pop sound.	C12.3 Testing for gases
	Insert a glowing splint into a test tube of the gas- if the gas is oxygen,	
Explain how to test for oxygen gas.	the split will relight.	C12.3 Testing for gases
	Option 1- bubble the gas through limewater which will go from clear	
	to cloudy OR Option 2- shake the gas through limewater and it will go	
Explain how to test for carbon dioxide gas.	from clear to cloudy.	C12.3 Testing for gases
	Place damp litmus paper into the gas- if it is chlorine then the lithium	
Explain how to test for chlorine gas.	paper will be bleached to a white colour.	C12.3 Testing for gases

In the early atmosphere there was intense volcanic		
activity- what gases were released by the		
volcanos?	Water vapour, carbon dioxide, methane and ammonia	C13.1 History of our atmosphere
Why did the amount of water vapour in the atmosphere decrease?	It condensed to form the oceans.	C13.1 History of our atmosphere
Why did the amount of carbon dioxide in the early	1. Photosynthesis from algae and plants 2. Dissolved in the oceans, 3.	
atmosphere decrease?	Locked up in rocks and fossil fuels.	C13.1 History of our atmosphere
Why did the amount of oxygen increase?	Photosynthesis occurring in plants and algae.	C13.1 History of our atmosphere
How was methane and ammonia removed from	Methane and ammonia reacted with oxygen producing nitrogen,	
the early atmosphere?	carbon dioxide and water.	C13.1 History of our atmosphere
Give the names of the gases in the modern	Nitrogen (approx. 80%), oxygen (approx. 20%), small amounts of	
atmosphere and their approximate percentage.	carbon dioxide, water vapour and noble gases.	C13.2 Our evolving atmosphere
Why are greenhouse gases needed?	To maintain temperatures on Earth to support life.	C13.3 Greenhouse gases
Name the three greenhouse gases?	Water vapour, carbon dioxide and methane	C13.3 Greenhouse gases
What type of radiation reaches Earth from the		
Sun?	Short wave- ultraviolet	C13.3 Greenhouse gases
What type of radiation leaves Earth?	Long wave- infrared	C13.3 Greenhouse gases
Name two human activities that increase the		
amount of carbon dioxide?	Use of fossil fuels, deforestation, transport, industry and factories	C13.3 Greenhouse gases
Name two human activities that increase the		
amount of methane?	Agriculture and landfill.	C13.3 Greenhouse gases
What is climate change?	The increase of the temperature of Earth.	C13.4 Global climate change
What is near review?	Experts looking over a scientist's findings to check that the results are reliable.	C12 4 Clobal alimata abanga
What is peer review?	Increase in tropical storms, desertification, rising sea levels and	C13.4 Global climate change
Name 4 effects of climate change?	drought.	C13.4 Global climate change
	The amount of greenhouse gases emitted by a product over its life	
What is a carbon footprint?	cycle.	C13.4 Global climate change
	Fit solar panels on the roof of your house, cycle instead of driving to	
How can a person reduce their carbon footprint?	work, install double glazing.	C13.4 Global climate change
What is the main source of pollutants in the		
atmosphere?	Combustion of fuels	C13.5 Atmospheric pollutants
What elements may be in fuels?	Carbon, hydrogen, sulfur.	C13.5 Atmospheric pollutants
	Carbon dioxide, water vapour, carbon monoxide, sulfur dioxide,	
What gases can be released when burning a fuel?	oxides of nitrogen and carbon particulates.	C13.5 Atmospheric pollutants

Coal only contains carbon and hydrogen- what		
gases will not be released when it is burnt?	Sulfur dioxide.	C13.5 Atmospheric pollutants
A fuel contains no carbon- what gases may be		
released when it is combusted?	Water vapour, sulfur dioxide and oxides of nitrogen.	C13.5 Atmospheric pollutants
What are the issues of carbon monoxide being produced?	It is a toxic gas which is colourless and odourless and so not easily detected.	C13.5 Atmospheric pollutants
What are the issues of sulfur dioxide and oxides of		
nitrogen being produced?	Respiratory problems in humans and acid rain.	C13.5 Atmospheric pollutants
What are the issues of carbon particulates being		
produced?	Global dimming and health problems in humans.	C13.5 Atmospheric pollutants
What do humans need resources for?	Warmth, shelter, food and transport.	C14.1 Finite and renewable resources
Define a finite resource.	A resource that is not renewable- it will run out.	C14.1 Finite and renewable resources
How can we slow the use of finite resources?	Reuse, recycle and reduce the number of resources currently used.	C14.1 Finite and renewable resources
What is an example of a resource that is recycled?	Metals such as scrap steel.	C14.1 Finite and renewable resources
What is an example of a resource that is reused?	Glass bottles	C14.1 Finite and renewable resources
	Water that is safe to drink as it has low levels of soluble salts and	
What is potable water?	microorganisms.	C14.2 Water safe to drink
What are sources of fresh water?	Ground water, lakes and rivers.	C14.2 Water safe to drink
Why are fresh water sources chosen over	Desalination requires a large amount of energy compared to filtering	
desalination of sea water?	and sterilising of fresh water.	C14.2 Water safe to drink
	Urban lifestyle (e.g. houses), industrial processes (e.g. factories) and	
Give three sources of wastewater.	agricultural waste (e.g. from farms).	C14.2 Water safe to drink
	Removal of grit, sedimentation to produce sewage sludge and	
How is wastewater treated?	effluent, anaerobic digestion of sewage, aerobic digestion of effluent.	C14.2 Water safe to drink
How is potable water produced from fresh water?	It is filtered and sterilised.	C14.3 Treating wastewater
How can water be sterilised?	With chlorine, ozone or ultraviolet light.	C14.3 Treating wastewater
How can salt water/sea water be desalinated?	Distillation or reverse osmosis.	C14.3 Treating wastewater
Explain which it is easier to obtain potable water	Fresh water as there are two stages (filtering and sterilisation)	
from- waste water or fresh water?	compared to four for wastewater.	C14.3 Treating wastewater
	Either wastewater as it requires less energy than distillation/reverse	
Explain which it is easier to obtain potable water	osmosis of salt water OR salt water as it does not undergo as many	
from- waste water or salt water?	stages as the treatment of wastewater.	C14.3 Treating wastewater
	An assessment that assesses the impact a product has on the	
What is a life cycle assessment?	environment.	C14.5 Life cycle assessments

	Extracting and processing raw materials, manufacturing and packaging, use during its lifetime, disposal at the end of its useful life,	
What stages are looked at during an LCA?	transport at each stage.	C14.5 Life cycle assessments
What is an issue with using a shortened version of	It can be misleading and be done to reach pre-determined	
an LCA?	conclusions.	C14.5 Life cycle assessments